Selective hydrogen sensor for application working in methane atmosphere

S. Krawczyk, A. Kamińska, E. Czerwosz, K. Sobczak, M. Kołodziew

1 Tele and Radio Research Institute, Warsaw, Poland
2 Institute of Physics, PAS, Warsaw, Poland

Introduction

For some purposes it is necessary to detect hydrogen in mixtures with other gases, e.g., methane. Especially this selectivity is important in such areas as defence systems, chemical industry or mining. We present selective hydrogen sensor for application working in atmosphere containing methane. Our sensor is based on nanocomposite C–Pd films. C–Pd films are promising materials for hydrogen sensor applications. It is connected with high surface area of these films and highly selective hydrogen absorption properties of palladium nanocrystals. The sensing mechanism of such films is based on resistance changes of palladium in the presence of hydrogen.

Experimental

The nanocomposite C–Pd films were obtained by Physical Vapour Deposition (PVD) method on alundum substrate. In PVD process two separated sources containing fullerene C60 and palladium acetate Pd(OAc)2 were used. The morphology and topography of these films were characterized using SEM and TEM techniques. Sensing measurements were performed in gas containing different hydrogen concentrations in N2/CH4 mixture. For comparison the changes of films response for H2/N2 mixture were also measured.

Characterization of C–Pd films

C–Pd films are composed of carbonaceous-palladium grains containing many palladium crystallites placed in fullerite and amorphous carbon matrix.

Sensitivity to H2 in CH4 presence

The presence of methane in the surrounding atmosphere does not affect C–Pd films sensitivity towards hydrogen.

Response to H2 in CH4 presence

The presence of methane gas does not influence kinetics of hydrogen adsorption on palladium surface, and then does not limit further interaction resulting in palladium hydride formation.

Conclusions

- Palladium nanograins placed in carbonaceous matrix are active in hydrogen sensing and are insensitive towards methane gas.
- The presence of methane in the surrounding atmosphere affects neither films sensitivity nor the rate of response to hydrogen.
- The obtained C–Pd films can be used as active layers of hydrogen sensors working in methane presence.

Acknowledgements

This project is co-financed by the European Regional Development Fund within the Innovative Economy Operational Programme 2007–2013 No UDA–POIG.01.03.01-14-071/08-07.